Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish.
نویسندگان
چکیده
Contamination of the environment with mercury has been an important concern throughout the world for decades. Exposure to high Hg levels can be harmful to the brain, heart, kidneys, lungs, and immune system of humans of all ages. Driven by the need to detect trace amounts of mercury in environmental samples, here we present a miniaturized, inexpensive, and battery-operated ultrasensitive gold nanoparticle-based nanomaterial surface energy transfer probe for screening mercury levels in contaminated soil, water, and fish which has excellent sensitivity (2 ppt) and selectivity for Hg(II) over competing analytes, with the largest fluorescence enhancement to date for sensing Hg(II) in environmental samples (1100-fold). The sensitivity of our probe to detect mercury level in soil, water, and fish is about 2-3 orders of magnitude higher than the EPA standard limit. We demonstrate that our probe is suitable to screen the amount of mercury in different fish, shellfish, and water samples from various commercial sources.
منابع مشابه
Gold nanomaterial-based miniaturized NSET Probe for rapid and ultra-sensitive detection of toxic metals from environment
Contamination of the environment with heavy metal ions has been an important concern throughout the world for decades. Here we discuss our recent effort on the development of a miniaturized and battery operated ultrasensitive gold nanoparticle based nanomaterial surface energy transfer (NSET) probe for screening toxic metal levels in contaminated soil, water and fish which has excellent sensiti...
متن کاملA colorimetric aptasensor for selective detection of oxytetracycline in milk, using gold nanoparticles and oxytetracline-short aptamer
Objective (s): In light of misuse of antibiotics in animal husbandry and their side effects on human health, there is an argent need to develop simple and rapid methods for determining the quantification of antibiotics in biological systems. Materials and Methods: In this work a facile and ultrasensitive colorimetric aptasensor was reported for detection of oxytetracycline (OTC) in water and mi...
متن کاملNaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(II) quantification.
Upconversion luminescence is an anti-Stokes' emission process by converting long wavelength near-infrared (NIR, 980 nm) irradiation into shorter wavelength visible light emission, which demonstrates many advantages including no autofluorescence, low damage to samples, no photobleaching, and high sensitivity. Based on the Rhodamine B thiolactone (RBT) functionalized NaYF(4):15%Yb(3+),5%Er(3+) (U...
متن کاملUsing Boehmite Nanoparticles as an Undercoat, and Riboflavin as a Redox Probe for Immunosensor Designing: Ultrasensitive Detection of Hepatitis C Virus Core Antigen
In this study a label-free electrochemical Immunosensor for ultrasensitive detection of Hepatitis C virus core antigen in serum samples was fabricated by using a simple approach. In this method a low-cost and sensitive immunosensor was fabricated based on a boehmite nanoparticles (BNPs) modified glassy carbon. The BNPs provide a specific platform with increased surface area which is capable of ...
متن کاملGold nanorods-based FRET assay for ultrasensitive detection of Hg2+.
A fluorescence method for detecting mercury ion in a homogeneous medium is proposed with gold nanorods (GNRs) as a fluorescence quencher on the basis of the fluorescence resonance energy transfer (FRET). Under the optimum conditions, the method exhibits a dynamic response range from 10 pM to 5 nM with a detection limit of 2.4 pM.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 1 3 شماره
صفحات -
تاریخ انتشار 2007